WARNING

The burners covered in this Guide are designed to mix fuel with air and burn the resulting mixture. All fuel burning devices are capable of producing explosions and fires when improperly applied, installed, adjusted, controlled, or maintained. This Guide will provide information for using these burners for their limited design purpose. Do not deviate from any instructions or application limits in this Guide without written advice from the Eclipse Combustion Division in Rockford, Illinois. Read this entire Guide before attempting to light burners. If you do not understand any part of the information in this Guide, contact your local Eclipse representative or Eclipse Combustion before proceeding further.

Important Notices About Safe Burner Operation

1. Store the burner inside. Exposure to the elements can damage the burner.
2. Adjustment, maintenance, and troubleshooting of the mechanical parts of this unit should be done by people with good mechanical aptitude and experience with combustion equipment.
3. Order replacement parts from Eclipse Combustion only. Any customer-supplied valves or switches should carry UL, FM, CSA, and / or CGA approval where applicable.
4. The best safety precaution is an alert and competent operator. Thoroughly instruct new operators so they demonstrate an adequate understanding of the equipment and its operation. Regular retraining must be scheduled to maintain a high degree of proficiency. The operator must have easy access to this Information Guide at all times.
1.0 Applications

JIB burners are complete assemblies ideal for use in ovens, furnaces, kilns, or incinerators requiring simple burner operation and easy maintenance.

2.0 Specifications

<table>
<thead>
<tr>
<th>Input</th>
<th>Natural gas or propane vapor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Btu/hr.</td>
<td>kW</td>
</tr>
<tr>
<td>210 JIB-F</td>
<td>1750,000</td>
</tr>
<tr>
<td>236 JIB-G</td>
<td>1,000,000</td>
</tr>
</tbody>
</table>

2.1 Gas Inlet Pressures

<table>
<thead>
<tr>
<th>Burner</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>210 JIB-F</td>
<td>5.0"</td>
<td>12.5 mbar</td>
</tr>
<tr>
<td>236 JIB-G</td>
<td>8.3"</td>
<td>20.7 mbar</td>
</tr>
</tbody>
</table>

2.2 Materials

- Burner Body: Cast iron
- Blower Housing: Cast iron
- Impeller: Steel
- Flame tube: Cast iron

2.3 Net Weight

- 72.5 pounds
- 32.9 kilograms

2.4 Electrical Supply

- 120 VAC, 1 cycle, 60 hz.

2.5 Motor Type

- 210 JIB-F: 1/25 hp, 1550 rpm, open, with built-in overload protection.
- 236 JIB-G: 1/6 hp, 3600 rpm, TEFG, with built-in overload protection.

2.6 Firing Chamber Limits

- Draft required: 0.05" w.c. (0.1 mbar) to 1.5" w.c. (3.7 mbar).

2.7 Ambient Temperature Limits

- -40°C to +104°F (-40°C to +40°C)

3.0 Applications

JIB burners are complete assemblies ideal for use in ovens, furnaces, kilns, or incinerators requiring simple burner operation and easy maintenance.

3.1 Specifications

4.0 Start-Up & Adjustment

4.1 Close the main manual gas cocks and the pilot gas cock and turn the burner On-Off switch “OFF.”

4.2 Loosen the lock nut on the adjusting screw (Figure 5). Using an Allen wrench, turn the adjusting screw clockwise until it seats within the burner body. Referring to the graph in Figure 4, open the screw number of turns required for the desired burner capacity.

4.3 Open the air shutter approximately 1/2” for the 210 JIB-F, and 3/4” for the 236 JIB-G.

4.4 Turn the handle of the adjustable pilot cock to the open position, Figure 6.

4.5 Turn the burner On-Off switch “ON” to start the blower.

4.6 Once the air flow switch has proven blower operation, the flame monitoring control will be energized. The pilot solenoid valve will open and there will be a 15 second trial for ignition (TFI).

4.7 After the pilot ignites, adjust the pilot gas cock by removing the top screw. Figure 6. Turn the adjusting screw clockwise to reduce gas flow, and counter-clockwise to increase gas flow. When the desired setting is reached, replace the top screw.

4.8 The flame monitor will prove pilot operation and energize both main gas solenoid valves.

4.9 Open the main manual gas cocks. After the main flame is lit, adjust the air shutter if necessary to achieve the desired flame characteristics.

4.10 When the burner is fully adjusted, lock the air shutter and gas adjusting screw in place.

4.11 If necessary, re-adjust the pilot setting to compensate for changes in the air shutter opening.

4.12 The burner can now be operated without further adjustment, using only the on-off switch.

4.13 The pilot solenoid valve will open and there will be a 15 second trial for ignition (TFI).

4.14 After the pilot ignites, adjust the pilot gas cock by removing the top screw. Figure 6. Turn the adjusting screw clockwise to reduce gas flow, and counter-clockwise to increase gas flow. When the desired setting is reached, replace the top screw.

4.15 The flame monitor will prove pilot operation and energize both main gas solenoid valves.

4.16 Once the air flow switch has proven blower operation, the flame monitoring control will be energized. The pilot solenoid valve will open and there will be a 15 second trial for ignition (TFI).

4.17 After the pilot ignites, adjust the pilot gas cock by removing the top screw. Figure 6. Turn the adjusting screw clockwise to reduce gas flow, and counter-clockwise to increase gas flow. When the desired setting is reached, replace the top screw.

4.18 The flame monitor will prove pilot operation and energize both main gas solenoid valves.

4.19 Once the air flow switch has proven blower operation, the flame monitoring control will be energized. The pilot solenoid valve will open and there will be a 15 second trial for ignition (TFI).

4.20 After the pilot ignites, adjust the pilot gas cock by removing the top screw. Figure 6. Turn the adjusting screw clockwise to reduce gas flow, and counter-clockwise to increase gas flow. When the desired setting is reached, replace the top screw.

4.21 The flame monitor will prove pilot operation and energize both main gas solenoid valves.

4.22 Once the air flow switch has proven blower operation, the flame monitoring control will be energized. The pilot solenoid valve will open and there will be a 15 second trial for ignition (TFI).

4.23 After the pilot ignites, adjust the pilot gas cock by removing the top screw. Figure 6. Turn the adjusting screw clockwise to reduce gas flow, and counter-clockwise to increase gas flow. When the desired setting is reached, replace the top screw.

4.24 The flame monitor will prove pilot operation and energize both main gas solenoid valves.

4.25 Once the air flow switch has proven blower operation, the flame monitoring control will be energized. The pilot solenoid valve will open and there will be a 15 second trial for ignition (TFI).

4.26 After the pilot ignites, adjust the pilot gas cock by removing the top screw. Figure 6. Turn the adjusting screw clockwise to reduce gas flow, and counter-clockwise to increase gas flow. When the desired setting is reached, replace the top screw.

4.27 The flame monitor will prove pilot operation and energize both main gas solenoid valves.

4.28 Once the air flow switch has proven blower operation, the flame monitoring control will be energized. The pilot solenoid valve will open and there will be a 15 second trial for ignition (TFI).

4.29 After the pilot ignites, adjust the pilot gas cock by removing the top screw. Figure 6. Turn the adjusting screw clockwise to reduce gas flow, and counter-clockwise to increase gas flow. When the desired setting is reached, replace the top screw.

4.30 The flame monitor will prove pilot operation and energize both main gas solenoid valves.

4.31 Once the air flow switch has proven blower operation, the flame monitoring control will be energized. The pilot solenoid valve will open and there will be a 15 second trial for ignition (TFI).

4.32 After the pilot ignites, adjust the pilot gas cock by removing the top screw. Figure 6. Turn the adjusting screw clockwise to reduce gas flow, and counter-clockwise to increase gas flow. When the desired setting is reached, replace the top screw.

4.33 The flame monitor will prove pilot operation and energize both main gas solenoid valves.

4.34 Once the air flow switch has proven blower operation, the flame monitoring control will be energized. The pilot solenoid valve will open and there will be a 15 second trial for ignition (TFI).

4.35 After the pilot ignites, adjust the pilot gas cock by removing the top screw. Figure 6. Turn the adjusting screw clockwise to reduce gas flow, and counter-clockwise to increase gas flow. When the desired setting is reached, replace the top screw.

4.36 The flame monitor will prove pilot operation and energize both main gas solenoid valves.

4.37 Once the air flow switch has proven blower operation, the flame monitoring control will be energized. The pilot solenoid valve will open and there will be a 15 second trial for ignition (TFI).

4.38 After the pilot ignites, adjust the pilot gas cock by removing the top screw. Figure 6. Turn the adjusting screw clockwise to reduce gas flow, and counter-clockwise to increase gas flow. When the desired setting is reached, replace the top screw.

4.39 The flame monitor will prove pilot operation and energize both main gas solenoid valves.

4.40 Once the air flow switch has proven blower operation, the flame monitoring control will be energized. The pilot solenoid valve will open and there will be a 15 second trial for ignition (TFI).

4.41 After the pilot ignites, adjust the pilot gas cock by removing the top screw. Figure 6. Turn the adjusting screw clockwise to reduce gas flow, and counter-clockwise to increase gas flow. When the desired setting is reached, replace the top screw.

4.42 The flame monitor will prove pilot operation and energize both main gas solenoid valves.

4.43 Once the air flow switch has proven blower operation, the flame monitoring control will be energized. The pilot solenoid valve will open and there will be a 15 second trial for ignition (TFI).

4.44 After the pilot ignites, adjust the pilot gas cock by removing the top screw. Figure 6. Turn the adjusting screw clockwise to reduce gas flow, and counter-clockwise to increase gas flow. When the desired setting is reached, replace the top screw.

4.45 The flame monitor will prove pilot operation and energize both main gas solenoid valves.
3.0 Installation

WARNING

If improperly adjusted or operated, burners can produce toxic concentrations of gases, including carbon monoxide. Venting these products into confined, poorly ventilated areas is dangerous. To avoid this situation:

- Vent the appliance to the outdoors wherever feasible. See the appliance manufacturer’s instruction manual for flue and stack design guidelines.
- Where equipment location or other considerations prevent outside venting, be sure that the building has adequate volume and fresh air makeup to dilute any potentially harmful combustion products down to safe levels as defined by OSHA or other authorities having jurisdiction.

3.1 Burner Inspection

Make a thorough inspection of the burner when unpacking and before installing it. If any parts appear broken, bent, or damaged, contact your Eclipse representative or the Eclipse factory before installing the burner.

3.2 Burner Environment

Protect burners from the weather.

Combustion air should be free of contaminants which might corrode or plug the blower or burner's internal passages.

Provide access to the burners for inspection, maintenance and removal.

Any obstruction placed directly in front of the burner will overheat and damage the burner.

3.3 Burner Mounting

See Figure 3 for mounting details. Do not overtighten the mounting bolts, as excessive force on the flange may break the casting.

For maximum service life of the automatic gas shut-off valves, mount the burner in the orientation shown in Figure 3.

3.4 Burner Piping

Connect the gas supply line to the burner and make certain the supply line is adequate in size. For long runs, the pipe size should be larger than the burner inlet to prevent excessive losses. Check with your gas company if in doubt.

For convenience in burner removal, Eclipse recommends installing a shutoff cock and suitable pipe union disconnect upstream of the burner.

Use flexible nipples on all gas connections. Solid piping may restrain the burner from normal thermal expansion and damage the burner or its piping components. Do not use the burner assembly to support the piping.

Gas piping must comply with American National Standard “National Fuel Gas Code” (NFPA No. 54 or ANSI Z223.1)*, or must be acceptable to the authority having jurisdiction.

3.5 General Wiring Suggestions

The electrical supply must be 120 volt, 60 cycle, single phase AC. Make all electrical connections in accordance with the appropriate wiring diagram in Figure 2.

Do not disturb the factory installed wiring. Contact the Eclipse factory regarding special operating sequences and controls. Install suitable main disconnect switch and fuses at a convenient location. Be certain that the ignition cable is properly connected to the spark plug and the pilot ignition transformer.

Electrical wiring must comply with the National Electric Code*, (NFPA Std. 70 or ANSI-CI 1981), or must be acceptable to the authority having jurisdiction.

*Available from:
National Fire Protection Association
Batterymarch Park
Quincy, MA 02269

American National Standard Institute
1430 Broadway
New York, NY 10018

Table of Components

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Description</th>
<th>210 JIB-F</th>
<th>236 JIB-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Manual Gas Cock</td>
<td>Essex</td>
<td>19122</td>
<td>19122</td>
</tr>
<tr>
<td>2</td>
<td>Automatic Gas Shut-Off</td>
<td>Eclipse Solenoid</td>
<td>13250</td>
<td>13250</td>
</tr>
<tr>
<td>3</td>
<td>Automatic Gas Shut-Off</td>
<td>Eclipse Solenoid</td>
<td>13250</td>
<td>13250</td>
</tr>
<tr>
<td>4</td>
<td>Manual Gas Cock</td>
<td>Essex</td>
<td>19122</td>
<td>19122</td>
</tr>
<tr>
<td>5</td>
<td>Automatic Pilot Valve</td>
<td>Eclipse Solenoid</td>
<td>16728-1</td>
<td>16728-1</td>
</tr>
<tr>
<td>6</td>
<td>Adjustable Pilot Cock</td>
<td>---</td>
<td>12659</td>
<td>12659</td>
</tr>
<tr>
<td>7</td>
<td>Air Flow Switch</td>
<td>SMDF-12C133</td>
<td>14494</td>
<td>14494</td>
</tr>
<tr>
<td>8</td>
<td>Ignition Transformer RA-890G or PCI UV</td>
<td>1/2 Wave Transformer 612-6A020E</td>
<td>13551</td>
<td>13551</td>
</tr>
<tr>
<td>9</td>
<td>Flame Monitor</td>
<td>See model under "Specifications."</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Flame Sensor</td>
<td>---</td>
<td>16946-6</td>
<td>16946-6</td>
</tr>
<tr>
<td>11</td>
<td>Spark Plug</td>
<td>---</td>
<td>11366</td>
<td>12995</td>
</tr>
<tr>
<td>12</td>
<td>Blower Motor</td>
<td>See "Specifications"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1
Dimensions & Parts List

210 JIB-F & 236 JIB-G Burner

Figure 2
Mounting Flange Detail

Optional 10° Adaptor
Figure 2—JIB Wiring Diagrams

Eclipse 5605

- Shown in normal position. If hot gases back up through the burner, the Therm-o-Disc switches to turn the motor on, cooling the burner.

Honeywell RA-890

- Shown in normal position. If hot gases back up through the burner, the Therm-o-Disc switches to turn the motor on, cooling the burner.

PCI 7256 BE

- Shown in normal position. If hot gases back up through the burner, the Therm-o-Disc switches to turn the motor on, cooling the burner.

Figure 3—Burner Mounting

- See Figure 1 for mounting flange dimensions.

Figure 4—Gas Adjustment Data

For Propane: With the gas inlet pressures listed above, multiply the number of turns of the adjusting screw by 0.40. Alternatively, the gas inlet pressure may be multiplied by .40, in which case the graph is correct as shown. See Figure 5 for adjusting screw details.
Figure 2—JIB Wiring Diagrams

Eclipse 5605

1. Shown in normal position. If hot gases back up through the burner, the Therm-o-Disc switches to turn the motor on, cooling the burner.

Honeywell RA-890

1. Shown in normal position. If hot gases back up through the burner, the Therm-o-Disc switches to turn the motor on, cooling the burner.

Figure 3—Burner Mounting

PCI 7256 BE

Terminal Locations

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>On/Off</td>
</tr>
<tr>
<td>2</td>
<td>Black</td>
</tr>
<tr>
<td>3</td>
<td>Black</td>
</tr>
<tr>
<td>4</td>
<td>Red</td>
</tr>
<tr>
<td>5</td>
<td>Orange</td>
</tr>
<tr>
<td>6</td>
<td>Purple</td>
</tr>
<tr>
<td>7</td>
<td>Brown</td>
</tr>
<tr>
<td>8</td>
<td>Blue</td>
</tr>
</tbody>
</table>

Firebird 72

1. Fused disconnect by customer. L1 must always be hot, L2 must be ground. DO NOT REVERSE!

RA-890

1. Fused disconnect by customer. L1 must always be hot, L2 must be ground. DO NOT REVERSE!

PCI 7256 BE

1. With 5" w.c. Gas Press. at Tap "B" 236 JIB-G

For Propane: With the gas inlet pressures listed above, multiply the number of turns of the adjusting screw by 0.40. Alternatively, the gas inlet pressure may be multiplied by .40, in which case the graph is correct as shown. See Figure 5 for adjusting screw details.
3.0 Installation

WARNING
If improperly adjusted or operated, burners can produce toxic concentrations of gases, including carbon monoxide. Venting these products into confined, poorly ventilated areas is dangerous. To avoid this situation:
- Vent the appliance to the outdoors wherever feasible. See the appliance manufacturer’s instruction manual for flue and stack design guidelines.
- Where equipment location or other considerations prevent outside venting, be sure that the building has adequate volume and fresh air makeup to dilute any potentially harmful combustion products down to safe levels as defined by OSHA or other authorities having jurisdiction.

3.1 Burner Inspection
Make a thorough inspection of the burner when uncrating and before installing it. If any parts appear broken, bent, or damaged, contact your Eclipse representative or the Eclipse factory before installing the burner.

3.2 Burner Environment
Protect burners from the weather. Combustion air should be free of contaminants which might corrode or plug the blower or burner’s internal passages.
- Provide access to the burners for inspection, maintenance and removal.
- Any obstruction placed directly in front of the burner will overheat and damage the burner.

3.3 Burner Mounting
See Figure 3 for mounting details. Do not overtighten the mounting bolts, as excessive force on the flange may break the casting.
- For maximum service life of the automatic gas shut-off valves, mount the burner in the orientation shown in Figure 3.

3.4 Burner Piping
Connect the gas supply line to the burner and make certain the supply line is adequate in size. For long runs, the pipe size should be larger than the burner inlet to prevent excessive losses. Check with your gas company if in doubt.

For convenience in burner removal, Eclipse recommends installing a shut-off cock and suitable pipe union disconnect upstream of the burner.

Use flexible nipples on all gas connections. Solid piping may restrain the burner from normal thermal expansion and damage the burner or its piping components. Do not use the burner assembly to support the piping.

Gas piping must comply with American National Standard “National Fuel Gas Code” (NFPA No. 54 or ANSI Z223.1)*, or must be acceptable to the authority having jurisdiction.

3.5 General Wiring Suggestions
The electrical supply must be 120 volt, 60 cycle, single phase AC. Make all electrical connections in accordance with the appropriate wiring diagram in Figure 2.
- Do not disturb the factory installed wiring. Contact the Eclipse factory regarding special operating sequences and controls. Install suitable main disconnect switch and fuses at a convenient location. Be certain that the ignition cable is properly connected to the spark plug and the pilot ignition transformer.

Electrical wiring must comply with the National Electric Code*, (NFPA Std. 70 or ANSI-CI 1981), or must be acceptable to the authority having jurisdiction.

*Available from:
National Fire Protection Association
Battery March, Park
Quincy, MA 02269
American National Standard Institute
1430 Broadway
New York, NY 10018

Figure 1
Dimensions & Parts List
210 JIB-F & 236 JIB-G Burner

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Manual Gas Cock</td>
<td>Essex 19122</td>
</tr>
<tr>
<td>2</td>
<td>Automatic Gas Shut-Off</td>
<td>Eclipse Solenoid 13250</td>
</tr>
<tr>
<td>3</td>
<td>Automatic Gas Shut-Off</td>
<td>Eclipse Solenoid 13250</td>
</tr>
<tr>
<td>4</td>
<td>Manual Gas Cock</td>
<td>Essex 19122</td>
</tr>
<tr>
<td>5</td>
<td>Automatic Pilot Valve</td>
<td>Eclipse Solenoid 16728-1</td>
</tr>
<tr>
<td>6</td>
<td>Adjustable Pilot Cock</td>
<td>--- 12659</td>
</tr>
<tr>
<td>7</td>
<td>Air Flow Switch</td>
<td>SMDF-12C133 14494</td>
</tr>
<tr>
<td>8</td>
<td>Ignition Transformer</td>
<td>RA-890G or PCI UV 1/2 Wave Transformer 13551</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All other burners 612-6A020E 12178</td>
</tr>
<tr>
<td>9</td>
<td>Flame Monitor</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>Flame Sensor</td>
<td>See model under “Specifications.”</td>
</tr>
<tr>
<td>11</td>
<td>Spark Plug</td>
<td>16946-6</td>
</tr>
<tr>
<td>12</td>
<td>Blower Motor</td>
<td>See “Specifications” 11366</td>
</tr>
</tbody>
</table>

Optional 10° Adaptor

1.0 Applications

JIB burners are complete assemblies ideal for use in ovens, furnaces, kilns, or incinerators requiring simple burner operation and easy maintenance.

2.0 Specifications

Inputs

<table>
<thead>
<tr>
<th>Natural gas or propane vapor</th>
<th>Btu/hr.</th>
<th>kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>210 JIB-F</td>
<td>750,000</td>
<td>219.9</td>
</tr>
<tr>
<td>236 JIB-G</td>
<td>1,000,000</td>
<td>293.0</td>
</tr>
</tbody>
</table>

Gas Inlet Pressures

<table>
<thead>
<tr>
<th>Burner</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>210 JIB-F</td>
<td>5.0” w.c.</td>
<td>12.5 mbar</td>
<td>14.0” w.c.</td>
<td>34.8 mbar</td>
</tr>
<tr>
<td>236 JIB-G</td>
<td>8.3” w.c.</td>
<td>20.7 mbar</td>
<td>14.0” w.c.</td>
<td>34.8 mbar</td>
</tr>
</tbody>
</table>

Electrical Supply

- 120 VAC, 1 cycle, 60 Hz.

Motor Type

- 210 JIB-F: 1/25 hp, 1550 rpm, open, with built-in overload protection.
- 236 JIB-G: 1/6 hp, 3600 rpm, TEFC, with built-in overload protection.

Firing Chamber Limits

- Draft required: 0.05” w.c. (0.1 mbar) to 1.5” w.c. (3.7 mbar).

Ambient Temperature Limits

- -40°C to +104°F (-40°C to +40°C).

Materials

- Burner Body: Cast iron.
- Blower Housing: Cast iron.
- Impeller: Steel.
- Flame tube: Cast iron.

Net Weight

| 72.5 pounds | 32.9 kilograms |

4.0 Start-Up & Adjustment

4.1 Close the main manual gas cocks and the pilot gas cock and turn the burner On-Off switch “Off.”

4.2 Loosen the lock nut on the gas adjusting screw (Figure 5). Using an allen wrench, turn the adjusting screw clockwise until it seats within the burner body. Refer to the graph in Figure 4, open the screw the number of turns required for the desired burner capacity.

4.3 Open the air shutter approximately 1/2” for the 210 JIB-F, and 3/4” for the 236 JIB-G.

4.4 Turn the handle of the adjustable pilot cock to the open position, Figure 6.

4.5 Turn the burner On-Off switch “On” to start the blower.

4.6 Once the air flow switch has proven blower operation, the flame monitoring control will be energized. The pilot solenoid valve will open and there will be a 15 second trial for ignition (TFI).

4.7 After the pilot ignites, adjust the pilot gas cock by removing the top screw, Figure 6. Turn the adjusting screw clockwise to reduce gas flow, and counterclockwise to increase gas flow. When the desired setting is reached, replace the top screw.

4.8 The flame monitor will prove pilot operation and energize both main gas solenoid valves.

4.9 Open the main manual gas cocks. After the main flame is lit, adjust the air shutter if necessary to achieve the desired flame characteristics.

4.10 When the burner is fully adjusted, lock the air shutter and gas adjusting screw in place.

4.11 If necessary, re-adjust the pilot setting to compensate for changes in the air shutter opening.

4.12 The burner can now be operated without further adjustment, using only the on-off switch.

Burners ordered less relay include an ignition plug, ignition transformer, and ignition cable. The customer must supply a suitable flame monitoring relay, base, and flame sensor meeting local and/or insurance requirements. To mount a UV scanner on the burner, order scanner adaptor #19748.

*Flame rod #13093-3 is furnished 3-1/4” long; it must be cut to 2-1/2” long to be used in the burner.

Flame monitoring equipment supplied with these burners by Eclipse may or may not meet local safety and/or insurance requirements. The owner/user and/or his insurance underwriter must assume responsibility for the acceptance, use, and proper maintenance of flame supervision, limit controls, and other safety devices.
5.0 Trouble-Shooting

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>POSSIBLE CAUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot fails to light.</td>
<td>1. On initial start-up, gas line may be filled with air. Repeat ignition trial several times to purge.</td>
</tr>
<tr>
<td></td>
<td>2. No power to ignition transformer or pilot solenoid.</td>
</tr>
<tr>
<td></td>
<td>3. Open circuit between ignition transformer and spark plug.</td>
</tr>
<tr>
<td></td>
<td>4. Spark plug is dirty or improperly installed.</td>
</tr>
<tr>
<td></td>
<td>5. Pilot gas cock screw closed.</td>
</tr>
<tr>
<td></td>
<td>6. Insufficient gas pressure at valve train inlet.</td>
</tr>
<tr>
<td>Main flame fails to light.</td>
<td>1. Pilot set too lean, blows out as main flame comes on.</td>
</tr>
<tr>
<td></td>
<td>2. Insufficient gas pressure at valve train inlet.</td>
</tr>
<tr>
<td></td>
<td>3. Gas flow misadjusted. See Section 4.0.</td>
</tr>
<tr>
<td>Burner behaves erratically, does not respond to adjustment.</td>
<td>1. Burner internals loose, dirty or burned out. If any of these problems exist, contact your Eclipse representative or the Eclipse factory for service.</td>
</tr>
<tr>
<td>Main flame is too long and yellow on high fire.</td>
<td>1. Gas flow is misadjusted. See Section 4.0.</td>
</tr>
<tr>
<td></td>
<td>2. Air shutter is closed too far.</td>
</tr>
<tr>
<td>Main flame is too short at high fire.</td>
<td>1. Gas flow is misadjusted. See Section 4.0.</td>
</tr>
<tr>
<td></td>
<td>2. Air shutter is open too far.</td>
</tr>
</tbody>
</table>

6.0 Maintenance

6.1 Motor Lubrication
Oil the blower motor according to the manufacturer’s instructions as printed on the motor label.

6.2 UV Scanner Maintenance
Periodically clean the UV scanner lens as described in the manufacturer’s product literature.

6.3 Ignition Plug and Flame Rod Replacement
Ignition plugs and flame rods wear out over long periods of normal burner operation. Eclipse recommends that the user keep at least one of each in stock at all times to prevent nuisance shutdowns. See Figure 7 for proper ignition plug installation.

236 JIB-G

ECLIPSE INFORMATION GUIDE
JUNIOR INDUSTRIAL BURNERS
Models 210 & 236 “JIB”

- Easy to install and operate.
- Rugged construction for long life in industrial environments.
- Protection against overheating from residual oven heat.
- Electronic flame monitoring.
- Two automatic gas shut-off valves.
- Air flow proving switch.
- 100% factory tested and adjusted.

Important Notices About Safe Burner Operation

1. Store the burner inside. Exposure to the elements can damage the burner.
2. Adjustment, maintenance, and troubleshooting of the mechanical parts of this unit should be done by people with good mechanical aptitude and experience with combustion equipment.
3. Order replacement parts from Eclipse Combustion only. Any customer-supplied valves or switches should carry UL, FM, CSA, and/or CGA approval where applicable.
4. The best safety precaution is an alert and competent operator. Thoroughly instruct new operators so they demonstrate an adequate understanding of the equipment and its operation. Regular retraining must be scheduled to maintain a high degree of proficiency. The operator must have easy access to this Information Guide at all times.

WARNING
The burners covered in this Guide are designed to mix fuel with air and burn the resulting mixture. All fuel burning devices are capable of producing explosions and fires when improperly applied, installed, adjusted, controlled, or maintained. This Guide will provide information for using these burners for their limited design purpose. Do not deviate from any instructions or application limits in this Guide without written advice from the Eclipse Combustion Division in Rockford, Illinois. Read this entire Guide before attempting to light burners. If you do not understand any part of the information in this Guide, contact your local Eclipse representative or Eclipse Combustion before proceeding further.